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Abstract 
Genetic algorithms are applied to the multiple products and multiple periods 

inventory lot-sizing problem with supplier selection under storage capacity.   
The objective of this research is to calculate the optimal inventory lot-sizing for each supplier 
and minimize the total inventory cost which includes joint purchase cost of the products, 
transaction cost for the suppliers, and holding cost for remaining inventory. It is assumed that 
demand of multiple products is known over a planning horizon. The problem is formulated as 
a mixed integer programming and is solved with genetic algorithms. Finally, numerical 
example is provided to illustrate the solution procedure. The results determine what products 
to order in what quantities with which suppliers in which periods. 
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1.  Introduction   
Lot-sizing problems are production 

planning problems with the objective of 
determining the periods where production 
should take place and the quantities to be 
produced in order to satisfy demand while 
minimizing production and inventory costs [1]. 
Since lot-sizing decisions are critical to the 
efficiency of production and inventory systems, 
it is very important to determine the right lot-
sizes in order to minimize the overall cost. 

The multiple periods inventory lot-sizing 
scenario with a single product was introduced 
by Wagner and Whitin [2], where a dynamic 
programming solution algorithm was proposed 
to obtain feasible solutions to the problem. 
Soon afterwards, Basnet and Leung [3] 
developed the multiple periods inventory lot-
sizing scenario which involves multiple 
products and suppliers.  

With the advent of supply chain 
management, much attention is now devoted to 
supplier selection. Rosenthal et al. [4] study a 
purchasing problem where suppliers offer 
discounts when a “bundle” of products is 
bought from them, and one needs to select 
suppliers for multiple products. Then a mixed 
integer programming formulation is presented. 
Ganeshan [5] has presented a model for 
determining lot-sizes that involves multiple 
suppliers while considering multiple retailers, 
and consequent demand on a warehouse. 
Jayaraman et al. [6] proposed a supplier 
selection model that considers quality, 
production capacity, lead-time, and storage 
capacity limits. 

In this paper based on Basnet and Leung 
[3] genetic algorithms (GAs)  are applied to the 
multiple products and multiple periods 
inventory lot-sizing problem with supplier 
selection under storage capacity. The objective 
of this research is to calculate the optimal 
inventory lot-sizing for each supplier and 
minimize the total inventory cost. The results 
determine what products to order in what 
quantities with which suppliers in which 
periods. 

2. Methods 
2.1 Genetic Algorithms Approach 
The genetic algorithms (GAs) approach is 

developed to find optimal (or near – optimal) 
solution. Detail discussion on GAs can be 
found in Holland [7], Michalewicz [8], and Gen 
and Cheng[9]. In this section, we explain GAs 
procedure is illustrated in Fig. 1 

To start the search GAs are initialized with a 
population of individuals. The individuals are 
encoded as chromosomes in the search space. 
GAs use mainly two operators namely, 
crossover and mutation to direct the population 
to the global optimum. Crossover allows 
exchanging information between different 
solutions (chromosomes) and mutation 
increases the variety in the population. After the 
selection and evaluation of the initial 
population, chromosomes are selected on which 
the crossover and mutation operators are 
applied. Next the new population is formed. 
This process is continued until a termination 
criterion is met [1]. 

 
 
 
 

                                                                                                 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
      Fig.1 The genetic algorithms procedure  
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 2.2 Mathematical Formulation 
This paper is built upon Basnet and Leung’s 

[3] work. We formulate the multi-product 
multi-period lot sizing with supplier selection 
under storage capacity problem using the 
following notations and assumptions: 

 
Notations: 
 
• Indices: 

i = 1,….,I  index of products. 
j = 1,….,J  index of suppliers. 
t = 1,….,T  index of time periods. 
 

• Parameters: 
    Dit   =  demand of product i in period t. 
    Pij = purchase price of product i from 

  supplier j. 
    Hi  =  holding cost of product i per period. 
    Oj  =  transaction cost for supplier j . 

St    =    storage capacity in period t.   
 

• Decision variables: 
    Xijt = number of product i ordered from   
              supplier j in period t. 
    Yjt  = 1 if an order is placed on supplier j in  
              time period t, 0 otherwise. 
 
• Intermediate variable: 

Rit = Inventory of product i, carried over     
       from period t  to period t + 1. 
 

Assumptions: 

      - Demand of products in period is known 
over a planning horizon. 

 -  Multi-product and multi-period. 
- All requirements must be fulfilled in the 

period in which they occur: shortage or 
backordering is not allowed. 

- Transaction cost is supplier dependent, but 
does not depend on the variety and quantity of 
products involved. 

-   Holding cost is product-dependent.  
     - Product needs a storage space and 
available total storage capacity is limited. 

 Based on the above assumptions a 
mathematical model is developed. The behavior 
of the model is illustrated in Fig. 2 

 

 

 

 

 

 

 

 

Fig. 2 Behavior of the model in period t. 
  

Regarding the above notation, the mixed 
integer programming is formulated as follows: 
 
 

 

 

 

 

  

 

 

 

 

The objective function consists of three 
parts: The total cost (TC) = 1) purchase cost of 
the products + 2) transaction cost for the 
suppliers + 3) holding cost for remaining 
inventory in each period.  
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    Constraint 1 all requirements must be filled 
in the period in which they occur: shortage or 
backordering is not allowed. Constraint 2 there 
is not an order without charging an appropriate 
transaction cost. Constraint 3 indicates that the 
sum of the inventory level must be smaller than 
or equal to the bound inventory. Constraint 4 is 
binary 0, 1 and Constraint 5 is non-negativity 
restrictions on the decision variable. 
 
 2.3 Numerical Example  

In this section we solved a numerical 
example of the model using real parameter 
genetic algorithms. We consider a scenario with 
three products over a planning horizon of five 
periods whose requirements are as follows: 
demands of three products over a planning 
horizon of five periods are: 

Table 1 Demands of three products over a 
planning horizon of five periods. In each cell, 
indicates Dit 

 
Table 2 Price of three products by each of 
three suppliers X, Y, Z. In each cell, 
indicates Pij 

 
 
Table 3 Transaction cost of three suppliers 
X, Y, Z. In each cell, indicates Oj 

 
 
 
 
 

Table 4 Holding cost of three products 
A,B,C. In each cell, indicates Hi 
 

 
 
 
 

 
Table 5 Storage capacity of three products 
over a planning horizon of five periods. In 
each cell, indicates St 

 
The solution of this problem (i = 3, j = 3 

and t = 5) is to place the following orders. All 
other Xijt = 0: 

 
Table 6 Order of three products over a 
planning horizon of five periods. In each cell, 
indicates Xijt 

 
• Cost calculation for this solution: 
Purchase cost for product 1 from supplier 2 

=  15 × 33 = 495     
Purchase cost for product 1 from supplier 3 

=  (12+17+20+13 ) × 32 = 1,984 
Purchase cost for product 2 from supplier 3 

=  (41+22+23+24 ) × 30 = 3,300  
Purchase cost for product 3 from supplier 2 

=  19 × 43 = 817    
Purchase cost for product 3 from supplier 3 

=  (20+18+17+16 ) × 45 = 3,195   

 Price 
Products X Y Z 

A 30 33 32 
B 32 35 30 
C 45 43 45 

              Planning Horizon (Five periods)
Products 1 2 3 4 

 

5 
A 12 15 17 20 13 
B 20 21 22 23 24 
C 20 19 18 17 16 

Transaction Cost 

X Y Z 
110 80 102 

Holding Cost 

A B C 
1 2 3 

Storage Capacity 
Planning Horizon (Five periods) 

1 2 3 4 
 

5 
80 80 70 60 100 

              Order 

 Planning Horizon (Five periods)
Products 1 2 3 4 

 

5 

A X131 
=  12 

X122 
=  15 

X133 
=  17 

X134 
=  20 

X135 
=  13 

B X231 
=  41 

- X233 
=  22 

X234 
=  23 

X235 
=  24 

C X331 
=  20 

X322 
=  19 

X333 
=  18 

X334 
=  17 

X335 
=  16 
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Number of orders from supplier 2 = 1 
(in periods 2). Transaction cost = 1× 80 = 80 

Number of orders from supplier 3 = 4 
(in periods 1, 3, 4 and 5). Transaction cost =   
4× 102 = 408 

There are no orders from supplier 1. 
 
Table 7 Carried-over inventory of three 
products over a planning horizon of five 
periods. In each cell, indicates Rit 
 

 
The first entry represents R11  

= X131 − D11 = 12 − 12 = 0; etc. 
Holding cost for product 1  

= H1 R1t = 1 × (0 + 0 + 0 + 0 + 0) = 0. ∑ 
Holding cost for product 2  

= H2  R2t = 2 × (21 + 0 + 0 + 0 + 0) =  42. ∑ 
Holding cost for product 3  

= H3  R3t = 3 × (0 + 0 + 0 + 0 + 0) = 0. ∑ 
Thus, the total cost for this solution:  

purchase cost + transaction cost+ holding cost 
=  495 + 1,984 + 3,300 + 817 + 3,195 + 408 

+ 80 + 42 = 10,321. 

3.  Results and discussion 

  Computational results 
In this section the comparison of the two 

methods solved problem size is using a 
commercially available optimization package 
like LINGO12 and Genetic Algorithms (GAs)  
code is developed in MATLAB7. Experiments 
were executed on a personal computer equipped 
with a Pentium 4 processor working at a speed 
of 2.80 GHz. The transaction costs were 
generated from int [50; 200], a uniform integer 
distribution including 50 and 200. The prices 
were from int[20; 50], the holding costs from 

int [1; 5], the storage capacity from int [50; 
4000], and the demands were from int [1; 
200].The results are shown in Table 8, Table 9 
and Table 10  ,where a problem size of l; m; n 
indicates number of suppliers = l, number of 
products = m, and number of periods = n.  

 The solution times of LINGO12 very 
slowly as the problem size increases. When 
LINGO12 is utilized, the optimal solution could 
be obtained only when the problem size is 
small. However, the GAs provides solutions 
that are close to optimum in a very short time, 
and thus appears quite suitable for realistically 
sized problems. 

 
Table 8 Percentage error of LINGO12   
[(Upper bound) – (Lower bound))/( Upper 
bound)] * 100 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9 Percentage error of GAs   [(Upper 
bound Lingo) – (GAs))/( Upper bound 
Lingo)] * 100 

 
 
 
 
 
 
 
 
 
 
 
 

 

              Carried-Over Inventory 
 Planning Horizon (Five periods)
Products 1 2 3 4 

 

5 
A 0 0 0 0 0 
B 21 0 0 0 0 
C 0 0 0 0 0 

Problem size %  Error 

3, 3, 5 0 
3, 3, 10 0 
3, 3, 15 0 
4, 4, 10 0 
4, 4, 15 -0.03 
5, 5, 20 -5.41 

10, 10, 50 6.61 
15, 15, 100 -0.61 
20, 20, 100 -1.52 

Problem size %  Error 

3, 3, 5 0 
3, 3, 10 0 
3, 3, 15 0 
4, 4, 10 0 
4, 4, 15 0.98 
5, 5, 20 2.08 

10, 10, 50 3.27 
15, 15, 100 2.63 
20, 20, 100 1.19 
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Table 10 Comparative results  

aLINGO =  Upper bound, bLINGO =  Lower bound. *Solutions could not be found within 2 hour. 
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